<image>

Binder Ignition

Binder Ignition

COURSE CONTENT BINDER IGNITION OVEN TEST

Module 1 Appendix

AASHTO T308

Binder Ignition

BINDER IGNITION

UPDATES

• 2024 - 2025: No updates

- 2023 Module 1 Binder Ignition Oven AASHTO T308- Updates
 - Thermometers for measuring temperature See Appendix Item Equipment for more information on Thermometers.
 - o Ignition furnace updates on temperature control, see Appendix Item Equipment
- 2022 New manual, but no method updates.

Module 1

Binder Ignition AASHTO T308

SCOPE

This test method AASHTO T308:

- Covers the determination of asphalt binder content of asphalt mixtures by ignition at temperatures that reach the flashpoint of the binder in a furnace.
- Heating may be convection method or direct infrared (IR) irradiation method.
- Two Methods,
 - **Method A** requires an ignition furnace with an internal balance.
 - **Method B** requires an ignition furnace with an external balance.

2

SIGNIFICANCE AND USE

This method can be used for:

- Quantitative determinations of asphalt binder content.
- Gradation in asphalt mixture and pavement specimens for quality control.
- Specification acceptance.
- Mixture evaluation studies.
- For gradation analysis according to AASHTO T30.

3

2

EQUIPMENT

- Ignition Furnace A forced air oven that heats by convection or direct IR irradiation. The convection type must be capable of maintaining 538 ± 5°C (1000 ± 9°F).
 For Method A the oven shall have an internal
 - For Method A the oven shall have an internal balance.
- Specimen basket assembly consisting of
 - Specimen Baskets
 - Catch Pan
 - Assembly guard
- See appendix, Item #7 for more information on equipment.

4

Oven Verification:

- The oven must be "verified' every 12 months and after each move.
 - Temperature
 - Balance

Methods:

- Yearly outside service (usually along with gyro and mold calibrations, etc.)
- In-house

5

Ignition Oven Basics:

- % Binder: Loss in mass of specimen
- Problem: Other materials also burn off
 - Moisture
 - Aggregate
 - Miscellaneous

6

4

5

- 2. <u>Aggregate Burn Loss</u> • Aggregate Correction Factor "Cf"
- 3. <u>Temperature effects on weighing</u> • Temperature Correction Factor "TCF"

1		Moisture
•	Мо	isture in mix will evaporate.
•	Th	s will count as binder unless corrected.
•	Th	ere are two methods to correct for moisture:
	1 hot	Dry mix to a constant mass at 110 ± 5°C (230 ±9°F) prior to testing.
	Metl	"Aging"—must still verify that constant mass has been achieved.
		OR
	Method 2	 Determine moisture content of mix (AASHTO T 329), subtract it from the apparent binder content.

8

7

Calculate the PERCENT CHANGE as follows:
(
$$A - B$$
) X 100
% Change = $A - B - X 100$
A = Previous mass determination
B = Newest mass determination
REPORT = To the nearest 0.01%
Reminder from BT certification:
First subtract the container weight from the total
weight for A and B then record the weights to the

nearest **0.01 g** before calculating % change. **10**

10

11

SP_Module-9, Binder Ignition

Rounding:	Method 2
 When calculating, moisture content, content, and Cf, round to nearest 0.0 	nder %
Side note: Binder Content: When comparing to specification, round binder content to 0.1%.	arest
	12

Moisture Testing Frequency:	
"Common Wisdom" as needed • High RAP/RAS mixtures especially prone to moisture. • Rainy weather • "Warm mix" Now appropriate	
• If plant operator reports burning more fuel to maintain temperature.	
• Watering piles per DNR. • Same stockpiles	
Dry weather No moisture when tested	14

14

2. Aggregate Burn Loss

Aggregate Correction Factor :

- To correct for loss of mass during the mix ignition due to aggregate burn-off.
- Determined during mix design by mix designer (usually QC).
- Re-determined if mix design changes (e.g. >5% change in stockpiled aggregate proportions).
- Re-determined if a different oven is used (QA or QC).

15

15

Aggregate Correction

C_F Procedure:

- Mix specimen in lab with dry aggregate at a known (*actual*) % binder.
- Input "zero" for the C_F
- Burn, obtain *measured* (apparent) % binder.
- The difference between the *measured* and the *actual* % binder is the Asphalt Binder Correction Factor (C_F).

16

17

• If the C_F is > 1.0%, re-determine at a lower temperature.

Aggregate Correction

16

Definitions:

- **M** = mass (g)
- **Mi(dry)** = Mass of mix before burning, dry already.
- **Mf** = Final mass of mix after burning (binder and some aggregate burned off).
- (Mi(dry) Mf) = Binder & aggregate burned off.
- **Magg** = Initial unburned mass of just the aggregate, dry.
- (Mi(dry) Mi(agg)) = Mix mass minus aggregate mass is the mass of binder, initially.

Aggregate Correction

• For the four replicates, discard the high and low results.

Aggregate Correction

Asphalt Binder Correction Factor (Aggregate Correction Factor) Data Sheet								
ASPHALTCC	ASPHALT CONTENT IGNITION METHOD AASHTO T 308 METHOD A							
Aggreg [Asphalt Binder C	ate Corre orrection	ction Fac	Total Dry N	Aass – Tare Ba	sket Mass = Initial Dry Specimen Mass			
Sample	Lab No	Date	eInity	ls				
Replicate	1	2	3	4				
Test Temperature	538	538			1			
Tare (basket, etc.) Mass (g)	3000.0	3000.0	1					
Total Dry Mass (g)	5000.1	5005.2	/					
Initial Dry Specimen Mass (g)	2000.1	2005.2	1					
Loss in Weight (g)	125.2	126.1			Loss in weight x 100			
%AC, measured = M	6.26	6.29	 %AC,	measured	= M = Initial Dry Mass			
%AC, actual = A	6.00	6.01						
$AC_{diff}(M_1 - M_2)$	0.03	> 0.15%? If	so, 2 more r	eplicates				
$C_F = M - A$	0.26	0.28						
C _F Average		0.3	27		Updated Slide			

ASPHALT CONTENT IGNITION METHOD AASHTO T 30 Classroom Practice METHOD A Aggregate Correction Factor [Asphalt Binder Correction Factor] Determination Sample Lab No. Date Initiats								
Beplicate	1	2	3	4				
Test Temperature	538	538		-				
Tare (basket, etc.) Mass (g)	3000.0	3000.0						
Total Dry Mass (g)	4129.2	4123.8						
Initial Dry Specimen Mass (g)								
Loss in Weight (g)	65.7	62.9						
%AC, measured = M								
%AC, actual = A	5.25	5.23						
%AC _{diff} (M ₁ – M ₂)		> 0.15%? If so, 2 more replicates						
$C_F = M - A$								
C _F , average		New Slide						

Asphalt Binder Correction Factor (Aggregate Correction Factor) Data Sheet								
~	METHO	D A						
Aggreg [Asphalt Binder C	1ass – Tare Ba	sket Mass = Initial Dry Specimen Mass						
Sample	Lab No	Date	:Initia	ls				
Replicate	1	2	3	4				
Test Temperature	538	538						
Tare (basket, etc.) Mass (g)	3000.0	3000.0	7					
Total Dry Mass (g)	5000.1	5005.2						
Initial Dry Specimen Mass (g)	2000.1	2005.2						
Loss in Weight (g)	125.2	126.1			Loss in weight x 100			
%AC, measured = M	6.26	6.29	 %AC,	measured	= M =			
%AC, actual = A	6.00	6.01						
$AC_{diff}(M_1 - M_2)$	0.03	> 0.15%? If	so, 2 more re	eplicates				
C _F = M - A	0.26	0.28						
C _F Average		0.7	27		Updated Slide			

ASPHALT CONTENT IGNITION METHOD AASHTO T 30 Classroom Development

Aggregate Correction Factor

Sample	Lab No	Date	eInitia	ls
Replicate	1	2	3	4
Test Temperature	538	538		
Tare (basket, etc.) Mass (g)	3000.0	3000.0		
Total Dry Mass (g)	4129.2	4123.8		
Initial Dry Specimen Mass (g)				
Loss in Weight (g)	65.7	62.9		
%AC, measured = M				
%AC, actual = A	5.25	5.23		
AC_{diff} (M ₁ – M ₂)		> 0.15%? If	so, 2 more re	eplicates
$C_F = M - A$				
C _F , average		N	ew Slide	

Use of Cf : Before production, when Cf is the unknown: Cf = Measured Content – Actual Content During production, when Actual Content is unknown: Actual = Measured Content – Cf

25

25

Aggregate Correction

26

RAP Aggregate Correction Factor :

(Asphalt Binder Correction Factor)

• Follow TM-77:

- Assumes aggregate C_F for RAP aggregate is same as C_F for virgin aggregate.
- Follow the standard procedure as if there was no RAP, i.e., use only the virgin aggregate, and only the binder content associated with the virgin aggregate portion when fabricating the specimen.
- So, the Cf from the virgin materials test is used as the Cf for the whole mix.

27

27

Aggregate Correction

3. Temperature Effects on Weighing Temperature Compensation Factor (TCF)

Convection Oven:

- Material "weighs" differently at elevated temperatures.
- Mass loss shown on the oven printout must be corrected.
- Oven calculates and prints the "Temperature Correction Factor (TCF)" for the particular test run.
- TCF = Apparent loss in mass due to heating.

28

28

Use of Temperature Correction Factor:

• When determining the Aggregate Correction Factor, if the oven printout is used for determination of the Measured Asphalt Content, include the Temperature Correction Factor (TCF).

 If all weighing is performed outside of the oven and specimen is cooled to room temperature, do not use the TCF

29

29

31

EPG 403.1.5 Link: Engineering_Policy_Guide (modot.org)

Sampling:

• Obtain samples of Loose Mix according to AASHTO R97. (See Module 5 on Sampling)

Reheating:

- Place the box or bucket of sample in an oven $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$
- gently warm the sample until workable.
- Remove the sample from box or bucket.

Reducing:

- Reduce the sample per AASHTO R47 (see module 6) to amount listed on Table 1.
- Spread sample in a large pan or two.

If needed, reheat the pan just until sample is workable. $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$

34

NOTE: Monitor the heating, do not leave sample in the oven too long.

Sampling

34

Ignition Oven Specimen Size (TABLE 1)						
Mix	NMS, in.	Specimen Size, g				
SP048 & BP-3	#4	1200-1700				
SP095	3/8	1200-1700				
SP125, BP-1 & BP-2	1/2	1500-2000				
SP190 & Bit Base	3/4	2000-2500				
SP250	1	3000-3500				
L						
Sampling		35				

- Put on safety gear.
- Open the chamber door and place the specimen basket with sample in the furnace.
 - Make sure basket is not touching the walls.

Method A

 Verify that the specimen weight is displayed on the furnace scale equals the **total mass_{inital}** weighed on bench scale ± 5 grams.

Start the oven. "Burn"

41

- Oven will stop when burn is complete.
- Tare off ticket of burn results.
- Put on safety gear, open the door, carefully pull out the basket and place it on a cooling plate.
- Place a protective cage on top of the basket assembly.
- Allow to cool to room temperature. ~ 60min.

Method A

	Asp	halt Conte (AASHTO T Reproducing	ent Ignition N 308-10) Method Oven Ticket Valu	lethod A Jes	Enlarged
	Project No.	Job No.	Route	Classroon	
*lf w _i = we	t _{hician}	Date	Sublot No.		Practice
	Empty Basket A	ssembly Weight (g), []		3000.2	
	Basket Assemb	ly + Wet (or dry) Samp	ole Weight (g), [<u>[</u> j]	4270.2	
	Wet (or dry) Sa	mple Weight (g), [W _i =			
	Loss in Weight	(g), [L] (from tape)			
	Total % Loss, [F	P _L = (L / W _i) x100]			
	Temperature Co	mpensation (%), [C _{tc}]	(from tape)		
	% AC, uncorrec	ted, [P _{bu} = P _L - C _{tc}]			
	Aggregate Correction (Calibration) Factor (%), [Cr] (from tape)				
	Calibrated %AC	(from ignition oven ta			
	% Moisture Cor				
Method A	% AC, corrected	l (by weight of mix), [P	$P_{b} = P_{bcal} - MC]^{*}$		

	Method Enlarge	D/			
	Project No.	Job No.	Route	Classroom Practice	ì
*lf w _i = we	et _{lician}	Date	Sublot No.	Macroe	
	Empty Basket Asser	nbly Weight (g), [T	1	3000.2	
	Basket Assembly + 1	Net (or dry) Sampl	e Weight (g), [T]	4270.2	
	Wet (or dry) Sample	Weight (g), [W _i = (T _i - T _e)]		
	Loss in Weight (g), [L] (from tape)			
	Total % Loss, [PL= (I	/ W _i) x100]			
	Temperature Compe	ensation (%), [C _{tc}]	(from tape)		
	% AC, uncorrected,	$[P_{bu} = P_{L} - C_{to}]$			
	Aggregate Correction (Calibration) Factor (%), [C ₁] (from tape))	
	Calibrated %AC (from ignition oven tape), $[P_{\rm bcal} = P_{\rm bu} - C_{\rm f}]$				
	% Moisture Content, [MC] (previous test)*			0.13	-
Method A	% AC, corrected (by	weight of mix), [P _t	= P _{bcal} – MC]*	4	6

Elarsed Time: 2000 Samle Weisht: 1270g Wardattogan 77.00 Herdattogan 77.00 Temr Comr 0.17% Calib. Factor: 0.26% Bitumen Ratio: 6.27%	Asphalt Content Ignition Me (AASHTO T 308-10) Method A Reproducing Oven Ticket Value	ethod _{es} <mark>KEY</mark>
Calibrated Asphalt Ctnt 5.85%	Project N *If you - you ot	County
30 494 79.0 6.20 37 495 79.7 6.27 36 495 79.5 6.25 35 497 79.3 6.24	Technician User Sublot No.	Mit: No.
34 499 79.1 6.22 33 503 78.7 6.19 32 506 78.2 6.15 31 509 77.7 6.11	Empty Basket Assembly Weight (g), [[]	3000.2
29 516 76.2 6.00 20 519 75.4 5.93 27 521 74.5 5.06 26 524 73.5 5.70	Basket Assembly + Wet (or dry) Sample Weight (g),	4270.2
25 526 72.2 5.60 24 520 70.0 5.57 23 529 69.5 5.47 22 530 60.0 5.35	Wet (or dry) Sample Weight (g), $[W_i = (\underline{T}_{\underline{i}} - \underline{T}_{\underline{g}})]$	1,270.0
21 531 66.4 5.22 20 531 64.8 5.10 19 532 63.2 4.97 10 536 59.6 4.69	Loss in Weight (g), [L] (from tape)	79.8
17 536 59.3 4.66 16 536 59.0 4.64 15 537 58.2 4.58 14 539 56.9 4.48 13 54	Total % Loss, [PL= (L / Wi) ×100](79.8 / 1270.0) × 100 = 6.28	9 6.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Temperature Compensation (%), $[C_{tc}] \ (from tape)$	0.17
8 459 11.7 0.92 7 439 5.3 0.41 6 433 4.0 0.31 5 427 2.0 0.22	% AC, uncorrected, [P ₈₉ = P _L - C _{ft}] 6.28 - 0.17 = 6.11	6.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aggregate Correction (Calibration) Factor (%), [C] (from tape)	0.26
Filter Set P. 6.11 - 0.26	= 5.85 Calibrated %AC (from ignition oven tape), [Pecet = Peu - Ce]	5.85
Tested By:	% Moisture Content, [MC] (previous test)*	0.13
Method A 5.85 - 0.13	$= 5.72^{\circ}$ AC, corrected (by weight of mix), $[P_b = P_{boat} - MC]^{*}$	5.72

Reporting binder content of mix				
	Binder Po	ortion	L	Enlara
TECHNICIAN				·yed
SAMPLE WEIGHT				~
BACKGROUND				
COUNTS GALIGE % AC				
AASHTO T 308 (IGNITION)				
GAUGE %AC	5,35			
% MOISTURE	0.12			
% AC BY IGNITION OR NUCLEAR	5.2			
				53
				53

SUPERPAVE MIXTURE PROPERTIES

JOD	0 ROUTE 0	MIX NO.	#VAL	UEI	LOT NO.	0		
SUBLOT								
DATE								
AASHTO T 209		A2 required	when T85 at	osorption >2	2.0% on any	aggregate fra	action.	
TECHNICIAN								
A = Wt. of san	nple:	1594.4						
A2=Wt. of san	nple (dry-back):							
D = Wt. of flas	k filled with water:	7472.2			0.0	0.0		
A = A + D (A2) E = Wt of flas	k filled with water and sample:	9000.0	0.0	0.0	0.0	0.0	0.0	0.0
Y = X - E	k med with water and sample.	645.1	0.0	0.0	0.0	0.0	0.0	0.0
Gmm = MAX.	SPECIFIC GRAVITY = A / Y	2.472	2.472	2.472	2.472	2.472	2.472	2.472
AASHTO T 166								
MOLDING TE								
A = Weight of	sample in air:	4867.8						
B = Weight of	sample in water:	2801.9						
C = Weight of	surface dry sample:	4880.4						
Gmb = BULK	SP. G. = A / (C-B)	2.342	0.000	0.000	0.000	0.000	0.000	0.000
A = Weight of	sample in air:	4899.1						
B = Weight of	sample in water: SPEC. 2	2814.5						
C = Weight of	surface dry sample:	4911.9						
Gmb = BULK	SP. G. = A / (C-B)	2.336	0.000	0.000	0.000	0.000	0.000	0.000
AVG. Gmb		2.339	0.000	0.000	0.000	0.000	0.000	0.000
TECHNICIAN								
MoDOT TM54 (M	NUCLEAR)							
SAMPLE WEI	Nuclear aa	ge						
COUNTS	J	J -						
GAUGE % AC								
AASHTO T 308	(IGNITION)							
GAUGE %AC	Tanition ov	on 5.35						
NUCLEAR OR IC	SNITION LYNNION UV							
% MOISTURE		0.12						
% AC BY IGN		5.2						
AASHTO R 35								
AASHTOR 35 A = Gmm (FIE	LD)	2.472	2.472	2.472	2.472	2.472	2.472	2.472
AASHTOR 35 A = Gmm (FIE B = Gmb (FIE	ELD) LD) (Avg.)	2.472 2.339	2.472 0.000	2.472	2.472 0.000	2.472 0.000	2.472 0.000	2.472 0.000
AASHTO R 35 A = Gmm (FIE) B = Gmb (FIE) C = Gsb (Job) D = Ba = Bara	ELD) LD) (Avg.) Mix)	2.472 2.339 2.557	2.472 0.000 2.557	2.472 0.000 2.557	2.472 0.000 2.557	2.472 0.000 2.557	2.472 0.000 2.557	2.472 0.000 2.557
AASHIOR 35 A = Gmm (FIE B = Gmb (FIE C = Gsb (Job D = Ps = Perc VMA = 100 = 0	ELD) LD) (Avg.) Mix) ent Agg. in mix	2.472 2.339 2.557 94.8	2.472 0.000 2.557 100.0	2.472 0.000 2.557 100.0	2.472 0.000 2.557 100.0	2.472 0.000 2.557 100.0	2.472 0.000 2.557 100.0	2.472 0.000 2.557 100.0
AASHIORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 × (V	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A)	2.472 2.339 2.557 94.8 13.3	2.472 0.000 2.557 100.0 100.0	2.472 0.000 2.557 100.0 100.0	2.472 0.000 2.557 100.0 100.0	2.472 0.000 2.557 100.0 100.0	2.472 0.000 2:557 100.0 100.0	2.472 0.000 2:557 100.0 100.0
AASHIORSS A = Gmm (FIE B = Gmb (FIE C = Gsb (Job D = Ps = Perc VMA = 100 \times ((A VFA = (VMA-	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA	2.472 2.339 2.557 94.8 13.3 5.4 59	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2:557 100.0 100.0 100.0	2.472 0.000 2.557 100.0 100.0 100.0
AASHIOR 35 A = Gmm (FIE B = Gmb (FIE C = Gsb (Job D = Ps = Perc VMA = 100 - ($Va = 100 \times ((A + 100))$)	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA	2.472 2.339 2.557 94.8 13.3 5.4 59	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0
AASHTO R 35 A = Gmm (FIE B = Gmb (FIE C = Gsb (Job D = Ps = Perc VMA = 100 - ($Va = 100 \times ((A + 100))$ VFA = (VMA-V AASHTO T 166	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA	2.472 2.339 2.557 94.8 13.3 5.4 59	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0
AASHTO K 35 A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-V AASHTO T 166 TECHNICIAN A = Mcieba	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA	2.472 2.339 2.557 94.8 13.3 5.4 59	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0
AASHTO K 35 A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - (Va = 100 X ((A VFA = (VMA-V VFA = (VMA-V AASHTO T 166 TECHNICIAN $A = Weight ofB = Weight iof$	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water:	2.472 2.339 2.557 94.8 13.3 5.4 59	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0
AASHTO K 35 A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - (Va = 100 X ((A VFA = (VMA-N) AASHTO T 166 TECHNICIAN A = Weight of B = Weight of	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample:	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 100.0 0
AASHTO K 35 A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - (Va = 100 X ((A VFA = (VMA-N) AASHTO T 166 TECHNICIAN A = Weight of B = Weight of C = Weight of Gmc = CORF	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282	2.472 0.000 2.557 100.0 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0	2.472 0.000 2.557 100.0 100.0 0 0	2.472 0.000 2.557 100.0 100.0 0
AASHTO K 35 A = Gmm (FIE) B = Gmb (FIE) C = Gsb (Job) D = Ps = Perc VMA = 100 - (t) Va = 100 X (t/A) VFA = (VMA-N) AASHTO T 166 TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX.	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209)	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472	2.472 0.000 2.557 100.0 100.0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472
AASHTO K 35 A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - (t) Va = 100 X (t/A) VFA = (VMA-N) AASHTO T 166 TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 3) 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0
AASHTO R35 A = Gmm (FIE) B = Gmb (FIE) C = Gsb (Job) D = Ps = Perc VMA = 100 - (i) Va = 100 X ((A) VFA = (VMA-N) AASHTO T 166 TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 3) 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0.000 2.472 0.0
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-N AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 3) 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0.000 2.472 0.0
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-N AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AASHIORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - (i) Va = 100 X (($AVFA = (VMA-N)AASHTO T 166TECHNICIANA = Weight ofB = Weight ofB = Weight ofGmc = COREGmm = MAX.%$ COMPACT THICKNESS SUBLOT FOR 2ND CORE	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gir SUBLOT WHEN DENOTED IN QC PL/	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0
AASHIORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - (i) Va = 100 X (($AVFA = (VMA-N)AASHTO T 166TECHNICIANA = Weight ofB = Weight ofGmc = COREGmm = MAX.%$ COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi SUBLOT WHEN DENOTED IN QC PL/ sample in air:	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-N AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of CORE	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi SUBLOT WHEN DENOTED IN QC PL/ sample in air: water:	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-N AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of B = Weight of C = Weight	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi SUBLOT WHEN DENOTED IN QC PL/ sample in air: water: surface dry sample:	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 0 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-N AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi SUBLOT WHEN DENOTED IN QC PL/ sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3 AN	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-N AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX.	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gi SUBLOT WHEN DENOTED IN QC PL/ sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3 AN	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 2.472 0.0 0.000 2.472	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0 0.000 2.472	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0.000 2.472 0.0 0.000 2.472
AASHTORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-V AASHTOT 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gm SUBLOT WHEN DENOTED IN QC PL/ sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gm	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3 AN	2.472 0.000 2.557 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000 2.472 0.0 0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0 0.000 2.472	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0 0.000 2.472	2.472 0.000 2.557 100.0 100.0 0 0 0.000 2.472 0.0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472 0.0 0.000 2.472 0.0
AASHTO K35 A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-V AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gr SUBLOT WHEN DENOTED IN QC PL/ sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gr	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 mm) 92.3 AN	2.472 0.000 2.557 100.0 100.0 0 0 0 0 0 2.472 0.0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 0 2.472 0.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472 0.0
AASHIORSS A = Gmm (FIE B = Gmb (FIE) C = Gsb (Job D = Ps = Perc VMA = 100 - ((Va = 100 X ((A VFA = (VMA-V AASHTO T 166 TECHNICIAN A = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT FOR 2ND CORE TECHNICIAN A = Weight of B = Weight of B = Weight of Gmc = CORE Gmm = MAX. % COMPACT THICKNESS SUBLOT	ELD) LD) (Avg.) Mix) ent Agg. in mix B X D / C) A - B) / A) /a) / VMA sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gr SUBLOT WHEN DENOTED IN QC PL/ sample in air: water: surface dry sample: SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY = A / (C - B SPECIFIC GRAVITY (T209) ION OF CORE = 100 x (Gmc / Gr	2.472 2.339 2.557 94.8 13.3 5.4 59 1255 710 1260 2.282 2.472 92.3 Mm) 92.3 AN	2.472 0.000 2.557 100.0 100.0 0 0 0 0 2.472 0.0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2:557 100.0 100.0 0 0 0 0 2.472 0.0 0 0.000 2.472 0.0 0.000 2.472 0.0	2.472 0.000 2.557 100.0 100.0 0 0 0 0.000 2.472 0.0 0.000 2.472 0.0

Binder Portion

TECHNICIAN Modot TM54 (NUCLEAR) SAMPLE WEIGHT BACKGROUND COUNTS GAUGE % AC AASHTO T 308 (IGNITION) GAUGE %AC NUCLEAR OR IGNITION % MOISTURE % AC BY IGNITION OR NUCLEAR

5.2			
0.12			
5.35			

Aggregate Gradation

Gradation Samples

- MoDOT allows gradation sample testing to be satisfied by using the residue from the HMA ignition oven sample.
- An aggregate (gradation) correction factor (AGCF) may be necessary to account for the breakdown in rock.
- RAP gradation in the field is determined with ignition oven.

56

56

Aggregate Gradation

RAS Gradation

- Not recommended to use T308 on RAS (too dangerous).
- Fan will suck fines out.
- Use extraction to get gradation or use the standard gradation.

57

Aggregate Gradation					
RAS Gradation					
	Sieve Size	% Passing			
	3/8″	100			
 Ground to minus 3/8 	#4	95			
inch.	#8	85			
 Gradation from solvent 	#16	70			
extraction, or assumed	#30	50			
from table:	#50	45			
	#100	35			
	#200	25			
		58			

Aggregate Gradation

Mix Gradation Samples

- When determining the *aggregate (gradation) correction factor* (AGCF), prepare an aggregate blank (no binder) specimen.
- Do a washed gradation analysis (AASHTO -T 30 Test for Mechanical Analysis of Extracted Aggregate) of the blank.
- Do a washed gradation analysis of the burned HMA specimen (T 30): Two replicates.

59

59

Gradation Samples Burned and Unburned Plus #200 Portion

• Determine a difference for each sieve, each replicate, say, for the #4 sieve:

(%-#4)_{blank} - (%-#4)_{burned} , replicate #1 (%-#4)_{blank} - (%-#4)_{burned}, replicate #2

• Calculate the average difference for that sieve (#4).

• The difference is called the AGCF for #4 sieve material. 61

61

Gradation Samples Burned and Unburned Plus #200 Portion				
 If the difference on an allowable (see below), its own AGCF applied t 	y sieve exceeds the then each sieve mu to the result.	e ust have		
• Allowable difference	es:			
• ≥ #8:	± 5.0%			
• ≥ #200 to < #8:	± 3.0%			
• ≤#200	± 0.5%			

62

		Т308″	Enlarged					
Sieve	Burned Rep#1	Burned Rep#2	Unburned Blank	Rep#1 Diff	Rep#2 Diff	Avg. Diff= AGCF	Allowable	
1″	100.0	100.0	100.0	0.0	0.0	0.0	±5.0	
3/4″	100.0	100.0	100.0	0.0	0.0	0.0	±5.0	
1/2"	86.5	89.5	89.7	3.2	0.2	1.7	±5.0	
3/8″	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0	
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0	
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0	
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0	
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0	
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0	
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5	
		For #4	sieve:					
		Rep#1: 5	53.9-52.1 = 1.	8				
	Rep#2: 53.9-55.6 = -1.7							
		Avg diff	= [1.8 + (-1.7)] /2 = 0.05	= 0.1 (ro	unded)	64	
		Compare	to ±5.0: 0.1	< 5.0 OK			64	

Common Testing Errors

of Non-Comparison/Early Shut-off

- Starting test when oven is cold: incomplete burn; can affect TCF.
- Neglecting to push "Start" (binder burns but is not recorded).
- Not cleaning oven & vents often enough.
 - Tip: Perform "Lift" test regularly to verify clean oven.
- Using vent pipe less than 4 in, diameter.

65

65

- Not cleaning baskets.
- Allowing scale plate or support tubes to rub.
- Not spreading specimen out.
- Not tearing off ticket before opening oven door.
- Allowing door to not latch correctly.
- Not correcting for moisture (e.g., when plant speed increases, etc.).

Common Testing Errors

66

Example Adapted from FHWA "Addendum T308"

Sieve	Burned Rep#1	Burned Rep#2	Unburn ed Blank	Rep# 1 Diff	Rep# 2 Diff	Avg Diff= AGCF	Allow able
1"	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
<u>3</u> "	100.0	100.0	100.0	0.0	0.0	0.0	±5.0
$\frac{1}{2}$ "	86.5	89.5	89.7	3.2	0.2	1.7	±5.0
3/8"	69.3	72.1	70.4	1.1	-1.7	-0.3	±5.0
#4	52.1	55.6	53.9	1.8	-1.7	0.1	±5.0
#8	38.5	42.3	41.0	2.5	-1.3	0.6	±3.0
#30	32.7	37.0	34.4	1.7	-2.6	-0.5	±3.0
#40	16.1	17.9	18.3	2.2	0.4	1.3	±3.0
#50	12.6	13.4	14.5	1.9	1.1	1.5	±3.0
#200	6.8	7.4	7.1	0.3	-0.3	0.0	±0.5

For #4 sieve:

Rep#1: 53.9-52.1 = 1.8

Rep#2: 53.9-55.6 = -1.7

Avg diff = [1.8 + (-1.7)]/2 = 0.05 = 0.1 (rounded)

Compare to ±5.0: 0.1 < 5.0 OK

Superpave

Module 9

- Using an oversize specimen.
- Not using the same size specimen for asphalt correction factor (C_F) determination and all production tests.
- Using a plant-made specimen instead of a labmade specimen for (C_F) determination.
- Not double-checking specimen weight on oven scale against exterior scale weight.

Common Testing Errors

67

67

- Materials used for (C_F) determination not the same as project materials.
- Inaccurate asphalt contents used for (C_F) determination.
- QA & QC starting with different temperature specimens.
- Door left open too long between loadings.
- Wrong chamber set point.
- Wrong burn profile.
- Weighing on bench balance when specimen is hot.

Common Testing Errors

68

Operation Problems

 Oven won't shut itself off—it's OK to manually shut off as long as 3 consecutive readings show less than 0.01% loss, and the sample appears to be completely burned (EPG 403.1.5).

69

68

Premature Burn Stop

- Vibrations
- Basket or strap up against wall or top of chamber.
- Clogged port
- Used U.S. date, not European date (1998-2000 NCAT models).

More information on Binder Ignition in the Appendix item #5.

70

70

71

AASHTO T 308: Asphalt Content by Ignition; Method A

	Trial#	1	2	R			
Pre	e-Production Oven Parameters Checklist: (Demonstrate oven setu	<mark>ıp)</mark>					
Inp	Input required parameters for routine production of a particular mix:						
1.	Enter TEMP setpoint [chamber temperature]						
2.	Enter CALIB. FACTOR [binder (aggregate) correction factor]						
Ro pro	utine Production Ignition Oven Procedure: <mark>(Demonstrate test pro- octor instruction)</mark>	cedur	<mark>e w</mark>	<mark>ith</mark>			
3.	Obtain weight of empty basket assembly						
4. 5	Place $\sim \frac{1}{2}$ of hotmix sample in each basket; move mix $\sim \frac{3}{4}$ " away from sides; re-assemble basket. Cool to room temperature.						
<u> </u>	weight of hotmix sample						
6.	Enter initial sample WEIGHT						
7.	Zero oven scale (push the number 0)						
8.	After putting on safety gloves, face shield, etc., carefully load sample into oven, making sure basket is not touching walls; close door						
9.	Check total weight: oven vs. exterior scale: No good if > 5 grams difference: Is it?						
10.	Initiates burn-off program by pressing START/STOP						
11.	After burn-off stops, remove and examine paper readout						
12.	Again, with safety gear on, open oven door, remove basket & place on cooling rack. Cool to room temperature.						
13.	Determine and record basket + specimen weight, then calculate and record final specimen weight (for manual calculations and/or verification of %AC).						
14.	Obtain Calibrated %AC through calculations (NOTE: in the field, this value will automatically be on the printout tape)						
15.	Correct the Calibrated %AC for moisture						
	PASS?						
	FAIL?						

Proctor_____Date_____

Reviewer_____Date_____

Appendix

Items:

- 1. Ignition Oven Test Cookbook
- 2. Equipment Information

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A Asphalt Binder Correction Factor (C_F) Determination (formerly "aggregate correction factor")

- 1. Run a butter mix through the mixing equipment.
- For a given mix, prepare two asphalt binder correction factor (CF) specimens at the design asphalt content using oven dry aggregate. It is recommended that the CF and field verification specimen sizes be the same.
- 3. Obtain the tare weight of the baskets, pan, and lid.
- 4. Place the hot mix into the sample basket. If the mix has cooled, oven dry at $110 \pm 5^{\circ}$ C to constant mass prior to placing in the basket. Spread the mix in the basket, being careful to keep the mix away from the sides. Allow at least ³/₄" clearance.
- 5. Test (burn) the specimens as discussed in "Test Procedure."
- 6. If the difference between the measured binder contents of the two replicate specimens is more than 0.15%, test two more specimens. Discard the high and low values.
- 7. Calculate the C_F by determining the difference between the actual and measured asphalt binder contents [Actual %AC – Measured %AC] for each sample, and averaging the two differences. The "Actual %AC" is the amount weighed out in the batching process, expressed as a percent by weight of the mix.
- 8. If the C_F exceeds 1.0%, MoDOT Standard Specification Section 403.19.3.1.1 modifies AASHTO T 308-18 in the following manner:
 - A. According to AASHTO T 308-18, if the C_F exceeds 1.0% at the typical chamber temperature of 538°C (1000°F), lower the chamber temperature to 482 ± 5°C (900 ± 8°F). If the C_F determined at this lower temperature is less than or equal to 1.0%, use that C_F for subsequent testing on that particular mix.
 - B. However, according to MoDOT Standard Specification Section 403.19.3.1.1, if the C_F determined at 482 ± 5°C (900 ± 8°F) exceeds 1.0%, lower the chamber temperature to 427 ± 5°C (800 ± 8°F). Use the C_F obtained at 427°C even if it exceeds 1.0%.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Asphalt Binder Correction Factor (C_F) Determination

Sample	Lab No	Date_	Initials	i
Replicate	1	2	3	4
Test Temperature	538	538		
Tare (basket, etc.) Mass (g)	3000.0	3000.0		
Total Dry Mass (g)	4530.0	4517.1		
Initial Dry Specimen Mass (g)				
Loss in Weight (g)	82.5	81.4		
%AC, measured = M				
%AC, actual = A	5.00	5.04		
%AC _{diff} (M ₁ – M ₂)		> 0.15%? If	so, 2 more re	eplicates
$C_F = M - A$				
C _F , average				

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A

Specimen size: Use the following table. It is recommended that the field verification specimen size be the same as the correction factor specimen size.

NMS (mm)	Sieve Size	Minimum Specimen Size* (g)
4.75	#4	1200
9.5	3/8"	1200
12.5	1/2"	1500
19.0	3/4"	2000
25.0	1"	3000
37.5	1 ½"	4000

*Specimen sizes shall not be more than 500g greater than the minimum.

POSSIBLE SETTING CHANGES

- 1. To change the Stability Threshold:
 - A. With oven off, press the "Calibration Factor" key while simultaneously pressing the Power Switch "on."
 - B. Enter new Stability Threshold value. Observe the Percent Loss window for the new value. Maximum allowable = 0.02.
 - C. Press the Power Switch "off" then "on" to return oven to normal operation.
- 2. To change filter (afterburner) temperature (750°C typically):
 - A. Press #5 key while simultaneously pressing the Power Switch "on."
 - B. Enter new temperature.
 - C. Press "Enter."
 - D. New setpoint will be displayed.

MAINTENANCE

- To check to see if the venting system is clogged, use the "Lift Test" procedure while the oven is at room temperature. With the power on, initiate a test (push "Start" button) without anything in the oven chamber. The blower fan will turn on. Watch the balance display. The display should read between -4 and -6 grams if the venting is adequate.
- 2. Burn accumulated soot out of the chamber by running the testing procedure at an elevated temperature without a sample.

TEST PROCEDURE

- 1. To change setpoint (furnace) temperature (538°C is typical):
 - A. Press "Temp"
 - B. Enter new setpoint
 - C. Press "Enter"
 - D. Press "Temp" again to verify new setpoint
- 2. To change the Asphalt Binder Correction Factor (CF):
 - A. Press "Calib. Factor"
 - B. Enter new C_F
 - C. Press "Enter"
 - D. Press "Calib. Factor" again to verify
- 3. Preheat the oven to the setpoint, typically 538°C.
- 4. If the moisture content will not be determined, oven-dry the specimen at $110 \pm 5^{\circ}$ C to a constant mass.
- 5. Weigh the empty basket, etc. on an external scale to the nearest gram.
- 6. Place half the sample in the bottom basket and the other half in the top. Keep the specimen at least ¾" away from the basket sides. For larger samples, some operators make a hole in the middle of the mix.
- 7. Cool the loaded assembly to room temperature.
- 8. Weigh the loaded assembly. Calculate the mass of the specimen.

- 9. Press the "Weight" key and enter the specimen mass. Press "Enter."
- 10. Press the "Weight" key again to verify specimen mass entry.
- 11. Press the "0" (zero) key to tare the internal balance.
- 12. Don your clean gloves, safety face shield, and safety attire.
- 13. Carefully load the specimen into the oven by inserting the basket until the handle tines touch the back of the oven. Make sure the basket is centered and is not touching the walls. Shut the door.
- 14. Observe the internal scale reading. The displayed value should check with the external scale value of basket assembly + dry specimen within ± 5 grams.
- 15. Press the "Start/Stop" key to initiate the ignition procedure.
- 16. When weight loss stabilizes (the change in %AC readings will not exceed 0.01% for three consecutive minutes), the oven will automatically end the test and print out the results. Depending on the oven setup, an alarm may sound and one may have to press the "Start/Stop" key to unlock the door.
- 17. Remove the printed results before opening the door as the tape is heatsensitive.
- 18. Again don the safety gear, open the door, and remove the basket and mount it on the cooling plate. Cover with the cooling cage and allow to cool to room temperature.
- 19. Determine and record the final mass of the specimen, Mf.
- 20. From the total % loss, the oven will automatically subtract the C_F and the Temperature Compensation to give the %AC (by weight of mix). The %AC by weight of aggregate is the "Bitumen Ratio."
- 21. Check for unburned asphalt (coke). If present, start with a new specimen.

NOTE: Read the manufacturer's manual for additional information on safety and more detailed instructions on maintenance and operation.

ASPHALT CONTENT IGNITION METHOD (AASHTO T 308-18) METHOD A Manual Weighing Method

Project No.	Job No.	Route	County			
Technician	Date	Sublot No.	Mix No.			
Empty Basket Asse	mbly Weight (g), [T _e]					
Initial Basket Assen	nbly + Wet (or dry) Sa	ample Weight (g), [Ti]				
Initial Wet (or dry) S	ample Weight (g), [W	/i = Ti - Te]				
Final Basket Assem	bly + Burned Sample	e Weight (g), [T _f]				
Loss in Weight (g),	$[L = T_i - T_f]$					
% Loss, [PL= (L / W	i) x100]					
Aggregate Correction	Aggregate Correction (Calibration) Factor (%), [C _f]					
Calibrated %AC, $[P_{bcal} = P_L - C_f]$						
% Moisture Content, [MC]						
% AC, corrected (by weight of mix), $[P_b = P_{bcal} - MC]$						

Ignition Ovens Forms.doc (11-24-06;12-28-06;12-12-08;3-9-10;12-14-10;4-14-11; 12-18-13; 4-22-15;12-9-15; 12-28-16; 12-26-18)

Equipment Information

for

AASHTO T 308

Determining the Asphalt Binder Content of asphalt Mixtures by the Ignition Method

M 339M/M 339, Thermometers Used in the Testing of Construction Materials

5. APPARATUS

5.1. Ignition Furnace—A forced-air ignition furnace that heats the specimens by either the convection or direct IR irradiation method. The convection-type furnace must be capable of maintaining a temperature of $538 \pm 5^{\circ}$ C ($1000 \pm 9^{\circ}$ F). The furnace chamber dimensions shall be adequate to accommodate a specimen size of 3500 g. The furnace door shall be equipped so that the door cannot be opened during the ignition test. A method for reducing furnace emissions shall be provided. The furnace shall be vented into a hood or to the outside and, when set up properly, shall have no noticeable odors escaping into the laboratory. The furnace shall have a fan capable of pulling air through the furnace to expedite the test and reduce the escape of smoke into the laboratory. The ignition furnace shall be capable of operation at the temperatures required, between at least 530 and 545°C (986 and 1013°F), and have a temperature control accurate within $\pm 5^{\circ}$ C ($\pm 9^{\circ}$ F) as corrected, if necessary, by standardization. More than one furnace may be used, provided each is used within its proper operating temperature range. When measuring temperature during use, the thermometer for measuring the temperature of materials shall meet the

TS-2c

T 308-2

AASHTO

requirements of M 339M/M 339 with a temperature range of at least 530 to 545°C (986 to 1013°F) and an accuracy of ± 1.25 °C (± 2.25 °F) (Note 1).

Note 1—Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class; or IEC 60584 thermocouple thermometer, Type J or K, Class 1.

- 5.1.1. For Method A, the furnace shall also have an internal balance thermally isolated from the furnace chamber and accurate to 0.1 g. The balance shall be capable of weighing a 3500-g specimen in addition to the specimen baskets. A data collection system will be included so that the mass can be automatically determined and displayed during the test. The furnace shall have a built-in computer program to calculate the change in mass of the specimen baskets and provide for the input of a correction factor for aggregate loss. The furnace shall provide a printed ticket with the initial specimen mass, specimen mass loss, temperature compensation, correction factor, corrected asphalt binder content (percent), test time, and test temperature. The furnace shall provide an audible alarm and indicator light when the specimen mass loss does not exceed 0.01 percent of the total specimen mass for 3 consecutive min. The furnace shall also allow the operator to change the ending mass loss percentage to 0.02 percent.
- 5.2. Specimen Basket Assembly—Consisting of specimen basket(s), catch pan, and an assembly guard to secure the specimen basket(s) to the catch pan.
- 5.2.1. *Specimen Basket(s)*—Of appropriate size to allow the specimens to be thinly spread and allow air to flow through and around the specimen particles. Sets with two or more baskets shall be nested. The specimen shall be completely enclosed with screen mesh, perforated stainless steel plate, or other suitable material.

Note 2—Screen mesh or other suitable material with maximum and minimum openings of 2.36 mm (No. 8) and 0.600 mm (No. 30), respectively, has been found to perform well.

- 5.2.2. *Catch Pan*—Of sufficient size to hold the specimen basket(s) so that aggregate particles and melting asphalt binder falling through the screen are caught.
- 5.3. Oven—Capable of maintaining 110 ± 5°C (230 ± 9°F). The oven(s) for heating shall be capable of operation at the temperatures required, between 100 and 120°C (212 and 248°F), within ±5°C (±9°F) as corrected, if necessary, by standardization. More than one oven may be used, provided each is used within its proper operating temperature range. The thermometer for measuring the oven temperature shall meet the requirements of M 339M/M 339 with a temperature range of at least 90 to 130°C (194 to 266°F) and an accuracy of ±1.25°C (±2.25°F) (Note 3).

Note 3—Thermometer types suitable for use include ASTM E1 mercury thermometers; ASTM E2877 digital metal stem thermometer; ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class; IEC 60584 thermocouple thermometer, Type J or K, Class 1, Type T any Class; or dial gauge metal stem (bi-metal) thermometer.

- 5.4. Balance—Of sufficient capacity and conforming to the requirements of M 231, Class G 2.
- 5.5. Safety Equipment—Safety glasses or face shield, dust mask, high-temperature gloves, longsleeved jacket, a heat-resistant surface capable of withstanding 650°C (1202°F), and a protective cage capable of surrounding the specimen baskets during the cooling period.
- 5.6. *Miscellaneous Equipment*—A pan larger than the specimen basket(s) for transferring the specimen after ignition, spatulas, bowls, and wire brushes.