

Tensile Strength Ratio

Tensile Strength Ratio

2025 Updates

• 2024 - 2025 NO updates

- 2023 Updates
- <u>AASHTO T283</u>:
 - 60 C Water Bath: The thermometer for measuring the temperature of the water bath shall meet the requirements of M339M/M339 with a temperature range of at least 55 to 65°C (131 to 149°F) and an accuracy of ±0.25°C (±0.45°F) (see note 2),
 - NOTE 2: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM E879 thermistor thermometer
 - ASTM E1137/E1137M Pt-100 RTD platinum resistance thermometer, Class A
 - IEC 60751: 2008 Pt-100 RTD platinum resistance thermometer, Class AA
 - 25 C Water Bath: Meeting the requirements of M339M/M339 with a temperature range of at least 20 to 30°C (68 to 86°F) and an accuracy of ± 0.13°C (± 0.22 °F) (see note 2),
 - NOTE 2: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM E879 thermistor thermometer
 - ASTM E1137/E1137M Pt-100 RTD Platinum Resistance, special order
 - IEC 60751: 2008 Pt-100 RTD platinum resistance thermometer, special order
 - Freezer: Meeting the requirements of M339M/M339 with a temperature range of at least -25 to -10°C (-13 to 14°F) and an accuracy of ± 0.75°C (± 1.35 °F) (see note 3),
 - NOTE 3: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM E2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type T, Special Class

• IEC 60584: thermocouple thermometer, Type T, Class 1

- Oven: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 25 to 185°C (77 to 365°F) and an accuracy of ± 0.75°C (± 1.35°F) (see note 4),
 - NOTE 4: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM E230/E230M thermocouple thermometer, Type T, Special Class
 - IEC 60584: thermocouple thermometer, Type T, Class 1

2022 Updates

- 2022 entire manual has been updated.
 - Several updates for TSR testing Jeff will go over this.

Course Content

Tensile Strength Raito

Updates

TSR Presentation

Background

TSR Role in QC/QA

Sampling for TSR

AASHTO R47 Reducing

Equipment

Estimation of Puck Mass

AASHTO T283 Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage.

Field Verification

TSR Proficiency

AASHTO T283 TENSILE STRENGTH RATIO (TSR)

Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage

Revision March 4, 2022

What is <u>Tensile</u> <u>Strength</u> <u>Ratio?</u>

- Moisture Sensitivity of Asphalt Mixtures
- Affects the structural integrity of a mixture.
- Based on the ratio of the tensile strength of a set of conditioned to a set of unconditioned specimens expressed as a %.

2

1

 Stripping will result if the bond is broken between the asphalt cement and aggregate.

4

5

- Resulting in pavement:
 - ■Rutting
 - Shoving
 - Raveling
 - Cracking

5

AASHTO Test Methods & Specifications (Specs.)

- R35 Volumetric Design Practice
- M323 Volumetric Design Specs.
- R30 Mix Conditioning
- T312 Gyro operation
- T166 Bulk Specific Gravity of gyratory pucks

7

- T209 Max Specific Gravity of Voidless Mix
- (Rice) T 283 Moisture Sensitivity
- R 47 HMA Sample Splitting
- D 3549 Thickness of Specimens
- 7

14

Section 401: BB and BP Mixes

401.2.1 (Standard Spec):

 During mix design, TSR required when PI exceeds 3 for any individual aggregate fraction with 10% or more passing the #30 sieve.

401.9 (Standard Spec):

During production QA checks PI once per project: if an individual aggregate fraction PI > 2 points above mix design value, TSR is required.

14

Section 401: BB and BP Mixes

Engineering Policy Guide 401.2.3: Additional TSR testing is warranted if: in the field, if the PI of the fine aggregate fractions has significantly increased or the overall quality of the aggregate has changed.

 If a source has a history of stripping, MoDOT may require TSR testing during design and/or production.

15

	rpave TSR djustment
TSR	% of Contract price
≥90	103
75-89	100
70-74	98
65-69	97
<65	Remove

TSR Field Sample Timing QC/QA **Sample During production:** loose mix samples will be taken and quartered as described in EPG Section 403.1.5. QC: Has the option of taking loose mix samples from any point in the production process. QA: Samples should be taken from the same point as the QC, although not at the same time.

20

20

TSR Field Sampling Frequency QC/QA

- **QC:** 1 per 10,000 tons.
- **QA**: 1 per 50,000 tons or one per mix (combination of projects).
- [contract with several projects with same mix, totaling < 50,000 tons].
- Random Locations: By 403 spec. (per EPG not enforced).

21

- QC: Gets their own TSR sample, plus a retained sample for QA.
 - Location: Truck sample, plant discharge, or behind the paver*.
 - *Behind paver, need full depth of the course. (Roadway is Last Resort)
 - **Size:** 75-125 lbs., plus another 125lbs. retained for QA.

- course. (Roadway is Last Resort) Same place as QC, but at a different time.
- Size: Gets their own independent ~250 lb. sample, retains 125 lbs.

23

- Filling one bucket/box at a time may render different characteristics. It is better to place one shovelful per bucket/box at a time.
- Should recombine and quarter.

24

22

23

26

Truck Sampling

- Obtain at least 3 approximately equal increments from random locations.
- Remove approximately 6 inches of the surface material from the sampling area.
- Obtain a random increment from the exposed surface and place in buckets or boxes.
- Move to the next location and repeat the process until enough material is collected.
- Combine to form a sample of the required size, close the container and mark with ID. 27

Truck Sampling Issues

- Possible segregation in truck bed.
- Sampling methods (e.g., length of arms) limit the position of sampling in the truck bed→ non-representative sample.
- Safety issues.
- Don't leave sample boxes uncovered at this location—may get contaminated with dust and overspray of release agent.

28

28

29

Plant Discharge

(Chop Gate-Diverter Chute)

- Divert entire production stream from drum to a loader bucket.
- Sample across the loader bucket, one shovel per box, all boxes.
- Repeat until buckets/boxes are full.
- Cool (Beware of dust).
- Close bucket/boxes.
- Write sample information the containers.

30

32

Mini-Stockpile – Option 1

- About 2 tons sampled from silo discharge into a truck.
- Dumped
- Back dragged
- Obtain approximately equal increments from at least 1 foot from the edge.
- Insert the shovel, exclude underlying material.
- Place the sample increments into clean buckets or boxes, close container, identify.

TSR Sampling-Roadway

- Before compaction
- Using a template or a square nose shovel, clearly mark out an area to be removed.
- Remove all mixture within the area.
- Do Not contaminate sample with underlying material.
- Place material into clean containers.
- Close or cover containers.
- Mark information on outside of containers.

35

35

QA TSR Sample

- Field QA should sample a 125 lb. sample.
 Ship to the lab at least 4 FULL boxes of TSR sample the size of 13" x 13" x 4.5"
- Field QA should also retain a 125 lb. sample.

(Do not send to Central Lab unless asked for. Discard only after issues of favorable comparison between QC and QA have been determined).

37

37

QA TSR Sample

- Central Lab will determine the TSR puck weight to be used from testing one of the boxes.
- Central Lab will combine the remaining boxes and go through the AASHTO R47 procedure.

Communicate: Field techs and Laboratory techs. if boxes were filled one-at-a-time in the field, then the **first box** may not be the same as the other **three**. Communicate to the laboratory if the boxes were filled this way.

40

40

41

Reducing

- Re-heat and combine field samples by mixing all boxes.
- EPG: The sample will be thoroughly mixed and quartered in accordance with AASHTO R47, or with an approved splitting/quartering device. Two opposite quarters will be retained for testing during the dispute resolution process, if necessary. The remaining two quarters will be mixed and quartered again and then tested.

R47, See your "Bituminous Technician Manual" 42

50

Estimate TSR Puck Mass

- Vsolids = (Mass)/(specific gravity)
- Vair = Vtotal Vsolids
- Mix is constantly changing:
 - Bin % changes.
 - Exact %'s of each material is changing.
 - Each material has a different specific gravity.
- So, volumes of each material are changing.
- So, puck mix mass must change to keep 7.0% air voids constant.

51

- pucks, average several G_{mb} values appropriate for the TSR sampled mat area: $G_{mb,meas}$
- Average the mass (*M_{meas}*) of each of the G_{mb} pucks.
- Average the puck height (from gyro printout) h @ N_{des} (h_x) of each of the G_{mb} pucks.

 $\mathbf{h}_{\rm x}$ in "cm" for historical pucks. (Usually 11.5 \pm 0.5 cm)

55

56

C= (Gmb meas avg) / Gmb est

Example TSR Mass Using 3 Volumetric Pucks

Historical volumetric pucks

- Mixture prepared in lab
- After mixing, place mixture in a pan (one specimen per pan) and cool at *room temperature* for 2.0 ± 0.5 hrs.
- Place in oven on perforated shelf (or on spacers) at 60±3° C for 16 ± 1 hrs.

65

65

68

TEST PROCEDURE: Day 1

- Warm the mix to soften it for quartering, (no specified temperature or time), then quarter.
 Reheat the mix to compaction temperature ± 3 °C.
 (Field mix: no specified time; Lab mix: 2 hr. ± 10 min.)
- Compact: use sufficient mix to achieve
 7.0 ± 0.5% air voids in a 95 ± 5 mm tall puck.
 Note: <u>SMA mixes</u> require 6.0 ± 0.5% air voids.
- Determine Rice gravity (G_{mm}). [Must be representative of TSR mix]

DAY 1

- Set gyro to "Height control" mode.
- Compact 6+ pucks. (Actually, will make one or more trial pucks; may also wish to compact several extra pucks).

70

71

70

Tender Pucks

- Extrude the puck from the mold.
- Remove mold lid and 1st paper disc.
- Cool for few minutes for stability before handling. Pucks will be <u>tender</u> while hot!
- Without distorting the puck, move it from gyratory to a cooling table.
- In this move, flip the puck over before sitting it down on the cooling table to remove the 2nd paper disc.
- ID the puck
- Allow to cool at room- temperature.
- Determine air voids by AASHTO T166.

71

DAY 1: Determine Air Voids

Determine G_{mb} for all 6 pucks.

(Follow <u>AASHTO T166</u> - Pucks need to be tested at $25 \pm 1^{\circ} C$).

Note:

See your Bituminous Technician Manual for AASHTO T166 Bulk Specific Gravity,

And AASHTO T269 Percent Air Voids. See your Superpave Manual for AASHTO T209 Maximum Specific Gravity.

77

	[B-C] A(B-C] 100[Gmm-Gmb]/Gmm Pa[B-C]/100													6.4516*2P/3.1415tD B'-A A+0.7Va A+0.8Va 100J'/Va																							
s.xls	2.476		6	3692.3	3707.9	2094.9	9.5								9	9.5	1197		3787.3							23	8	24	~ -				18h 54m	23h 30m		12/22/2003 4-30 PM	1.00.1
T-283 Rev3-24-04Example.xls	Gmm =	Wet Subset	5	3759.7	3770.7	2144.3	9.5	1626	2.312	6.6	108			Wet Subset	5	9.5	1517	44	3846.0	3759.7	86	108	3835	3846	80	23	ω	26	-				19h 16m	23h 30m		12/22/2003 4-25 PM	4.601 11
r-283 Rev3-2			4	3822.4	3833.5	2180.0	9.7	1654	2.312	6.6	110	Wet			4	9.7	1564	44	3902.9	3822.4	81	110	3899	3910	73	22	8	25	~		-		19h 44m	23h 30m		12/22/2003 4-20 PM	4.60 1 11
F			m	3755.1	3765.0	2140.2	9.5	1625	1625 2.311 6.7	6.7	108				с	9.5	3761	108	t. (g)[B'])[A]	(cm³)[J]	. (cm³)[Va]	VSSD)	VSSD)		in. Hg	Time (min)	in. Hg Time (min)	Time (min)	2h	2n		cer [nrs) erhath []	12/22/2003 5-35 DM	0.00
AASHTO T-283		Dry Subset	2	3749.7	3761.0	2135.9	9.5	1625	2.307	6.8	111	6.9		Dry Subset	2	9.5	3601	104 108	<u>Vacuum SSD</u> W	Weight in air (g)[A]	Vol. Absorb H ₂ O (cm ³)[J]	Dry volume of air (cm^3) [Va]	70% Sat. (Target VSSD)	80% Sat. (Target VSSD)	% Saturation	•	•		Drv Subset	1h 55m		L ;	I ime in Freezer (Minimum 16 hrs)	Time in 60 C waterbath	(24 ± 1 hrs)	12/22/2003 5:30 PM	0.00
			1	3725.8	3735.6	2114.3	9.5	1621	2.298	7.2	117	Dry			1	9.5	3852	111	men[D]		108			AVG		6.9				1h 50m			lies			12/22/2003 5-25 PM	111107.0
	Mix Number Example	Gmb Worksheet	Specimen #	Weight in air (g) [A]	SSD Weight (g) [B]	Weight in water (g) [C]	Height (0.1 cm) [t]	Volume (cm ³) [B - C]	Gmb [A / (B - C)]	% Air Voids [Pa]	Dry volume of air (cm ³)[Va]	Average % Air Voids Overall		TSR Worksheet	Specimen #	Height (0.1 cm) [t]	Max. Load (lbs)[P]	Ind. Tens. Str.:ITS (psi)*	* For 15.0 cm diameter specimen[D]	Avg. Wet ITS (psi)[Swet]	Avg. Dry ITS (psi)[Sdry]	TSR (%)[100Swet/Sdry]	· ·		Air Voids (%)	Dry Subset %Air	Wet Subset %Air	Saturation (%)		Time in 25 C waterbath	(2 hrs ± 10 min)		NOTE: Shaded cells indicate cells needing input values			Test Time	

		AASHTO T-283		T-283 Rev3-3	T-283 Rev3-24-04Example.xls	s.xls	
Mix Number Example					Gmm =	2.476	
Gmb Worksheet		Dry Subset			Wet Subset		
Specimen #	،	2	с	4	5	9	
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
/olume (cm³) [B - C]	1621	1625	1625	1654	1626		[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	<u>6.6</u>		100[Gmm-Gmb]/Gmm
Ury volume of air (cm [*])[va]	111	111	108	110	108		Pa[B-C]/100
Average % Air Voids Overall	Dry	6.9		Wet			
•							
SR Worksheet		Dry Subset			Wet Subset		
Specimen #	£	2	с	4	5	9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (lbs)[P]	3852	3601	3761	1564	1517	1197	
Ind. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
* For 15.0 cm diameter speci	imen[D]	<u>Vt: (g)[B]</u>	/t. (g)[B']	3902.9	3846.0	3787.3	
		Weight in air (g)[A]	[A]	3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O (cm ³)[J ¹]	(cm ³)[J']	81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of air (cm ³)[Va]	r (cm³)[Va]	110	108		
		70% Sat. (Target VSSD)	VSSD)	3899	3835		A+0.7Va
	AVG	80% Sat. (Target VSSD)	VSSD)	3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	
Wet Subset %Air			Time (min)	ω	ω	ω	
Saturation (%)			in. Hg	25	26	24	
		Drv Subset	Time (min)	-	~	-	
Time in 25 C waterbath	1h 50m	1h 55m	2h				
(2 hrs ± 10 min)							
					Wet Subset		
NOTE: Shaded cells indicate cells needing input values	e li les	Time in Freezer (Minimum 16 hrs)	ier Jrs)	19h 44m	19h 16m	18h 54m	
	0	Time in 60 C waterbath	erbath	23h 30m	23h 30m	23h 30m	
		(24 ± 1 hrs)	-				
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	
	5:25 PM	5:30 PM	5:35 PM	4:20 PM	4:25 PM	4:30 PM	

								[B-C]	A/[B-C]	100[Gmm-Gmb]/Gmm	Pa[B-C]/100		_					6.4516*2P/3.1415tD			B'-A		A+0.7Va	A+0.8Va	100J'/Va												
s.xls	2.476		9	3692.3	3707.9	2094.9	9.5								9	9.5	1197		3787.3							23	8	24	-				18h 54m		23h 30m		12/22/2003
T-283 Rev3-24-04Example.xls	Gmm =	Wet Subset	5	3759.7	3770.7	2144.3	9.5	1626	2.312	6.6	108			Wet Subset	5	9.5	1517	44	3846.0	3759.7	86	108	3835	3846	80	23	8	26	-			Wet Subset	19h 16m		23h 30m		12/22/2003
r-283 Rev3-2			4	3822.4	3833.5	2180.0	9.7	1654	2.312	6.6	110	Wet			4	9.7	1564	44	3902.9	3822.4	81	110	3899	3910	73	22	8	25	. 			-	19h 44m		23h 30m		12/22/2003
·			с	3755.1	3765.0	2140.2	9.5	1625	2.311	6.7	108				ю	9.5	3761	108	t. (g)[B'])[A]	(cm [°])[J']	(cm³)[Va]	/SSD)	/SSD)		in. Hg	Time (min)	in. Hg	Time (min)	40	711		er	Irs)	rbath		12/22/2003
AASHTO T-283		Dry Subset	2	3749.7	3761.0	2135.9	9.5	1625	2.307	6.8	111	6.9		Dry Subset	2	9.5	3601	104	<u>V</u> acuum <u>SSD</u> Wt. (g)[B']	Weight in air (g)[A]	Vol. Absorb H ₂ O (cm ³)[J [*]	Dry volume of air (cm^3) [Va]	70% Sat. (Target VSSD)	80% Sat. (Target VSSD)	% Saturation					Ury Subset			Time in Freezer	(Minimum 16 hrs)	Time in 60 C waterbath	(SIII I +7)	12/22/2003
	l		Ł	3725.8	3735.6	2114.3	9.5	1621	2.298	7.2	117	Dry			1	9.5	3852	111	men[D]		108			AVG		6.9				1 h E0				values			12/22/2003
	Mix Number Example	Gmb Worksheet	Specimen #	Weight in air (g) [A]	SSD Weight (g) [B]	Weight in water (g) [C]	Height (0.1 cm) [t]	Volume (cm ³) [B - C]	Gmb [A / (B - C)]	% Air Voids [Pa]	Dry volume of air (cm ³)[Va]	Average % Air Voids Overall		TSR Worksheet	Specimen #	Height (0.1 cm) [t]	Max. Load (Ibs) [P]	Ind. Tens. Str.:ITS (psi)*	* For 15.0 cm diameter specimen[D]	Avg. Wet ITS (psi)[Swet]	Avg. Dry ITS (psi)[Sdry]	TSR (%)[100Swet/Sdry]			Air Voids (%)	Dry Subset %Air	Wet Subset %Air	Saturation (%)			(2 hrs + 10 min)		NOTE: Shaded cells indicate	cells needing input val			Test Time

Vacuum Saturation, cont'd.

- Place puck in vacuum chamber and submerge in water (≥ 1" cover and ≥ 1" above chamber bottom).
- Apply 10-26" (suggested 23") mercury vacuum for 5-10 (suggested 8) minutes (it's more important to achieve vacuum than stay within time limits).
- This step is pulling air out of the puck and creating a vacuum inside the puck.
- If use high/fast vacuum, may get uneven saturation—poor QC/QA comparison.

90

	G			S	6	6		[B-C]	A/[B-C]	100[Gmm-Gmb]/Gmm	Pa[B-C]/100				1		6.4516*2P/3.1415tD	ε.		B'-A		A+0.7Va	A+0.8Va	100J'/Va								1m		30m		(003 M
e.xls	2.476		9	3692.3	3707.9	2094.9	9.5							9	9.6	1197		3787.3							23	8	24	~				18h 54m		23h 3(12/22/2003 4:30 PM
T-283 Rev3-24-04Example.xls	Gmm =	Wet Subset	5	3759.7	3770.7	2144.3	9.5	1626	2.312	6.6	108		Wet Subset	5	9.5	1517	44	3846.0	3759.7	86	108	3835	3846	80	23	8	26	~			Wet Subset	19h 16m		23h 30m		12/22/2003 4-25 PM
T-283 Rev3-2			4	3822.4	3833.5	2180.0	9.7	1654	2.312	6.6	110	Wet		4	9.7	1564	44	3902.9	3822.4	81	110	3899	3910	73	22	8	25	-				19h 44m		23h 30m		12/22/2003 4-20 PM
·			3	3755.1	3765.0	2140.2	9.5	1625	2.311	6.7	108			m	9.5	3761	108	/t. (g)[B']	(a)[A]	(cm [°])[J']	r (cm³)[Va]	VSSD)	VSSD)		in. Hg	Time (min)	in. Hg	Time (min)	40	711		zer [hrs)	erbath	1	12/22/2003 5-35 PM
AASHTO T-283		Dry Subset	2	3749.7	3761.0	2135.9	9.5	1625	2.307	6.8	111	6.9	Dry Subset	5	9.5	3601	104	<u>V</u> acuum <u>SSD</u> Wt. (g)[B']	Weight in air (g)[A]	Vol. Absorb H ₂ O	Dry volume of air (cm ³)[Va]	70% Sat. (Target VSSD)	80% Sat. (Target VSSD)	% Saturation				Der Cubcot	UI y JUDSEL			Time in Freezer	(Minimum 16 hrs)	Time in 60 C waterbath	(24 ± 1 hrs)	12/22/2003 5:30 PM
	l		L	3725.8	3735.6	2114.3	9.5	1621	2.298	7.2	117	Dry		-	9.5	3852	111	men[D]		108			AVG		6.9			_	1h 60m				nes			12/22/2003 5.25 PM
	Mix Number Example	Gmb Worksheet	Specimen #	Weight in air (g) [A]	SSD Weight (g) [B]	Weight in water (g) [C]	Height (0.1 cm) [t]	Volume (cm 3) [B - C]	Gmb [A / (B - C)]	% Air Voids [Pa]	ofa	Average % Air Voids Overall	TSR Worksheet	Specimen #	Height (0.1 cm) [t]	Max. Load (lbs) [P]	Ind. Tens. Str.:ITS (psi)*	* For 15.0 cm diameter specimen[D]	Avg. Wet ITS (psi)[Swet]	Avg. Dry ITS (psi)[Sdry]	TSR (%)[100Swet/Sdry]			Air Voids (%)	Dry Subset %Air	Wet Subset %Air	Saturation (%)			(2 hrs ± 10 min)		NOTE: Shaded cells indicate	cells needing input values			Test Time

DAY 1, Cont'd. (wet pucks)

- When saturation is 70-80%, wrap the pucks in plastic wrap, place in bag with 10ml water, seal, and place in freezer at -18 ± 3 °C for at least 16 hrs. Verify temperature throughout the freezer.
- Do not allow specimens to drain after saturation but prior to freezing.

101

100

DAY 2: Wet Pucks

Remove the pucks from freezer, remove from bag, and thaw pucks in a water bath at 60° ± 1 C for 24 ± 1 hr. Minimum 1 in. water cover above specimens. Unwrap plastic wrap as soon as the film thaws.

OR
Using metric puck measurements:
Indirect Tensile Strength "Dry", S₁ (psi)
$$S_1 = \frac{2P}{\pi t D} \times 6.4516$$
$$P = load (lbs.)$$
$$t = puck thickness (cm)$$
$$D = puck diameter (15.0 cm)$$
$$\pi = 3.14159$$
114

Mix Number Example					Gmm =	2.476	
Gmb Worksheet		Dry Subset			Wet Subset		
Specimen #	1	2	ю	4	5	9	
Weight in air (g) [A]	3725.8	3749.7	3755.1	3822.4	3759.7	3692.3	
SSD Weight (g) [B]	3735.6	3761.0	3765.0	3833.5	3770.7	3707.9	
Weight in water (g) [C]	2114.3	2135.9	2140.2	2180.0	2144.3	2094.9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Volume (cm ³) [B - C]	1621	1625	1625	1654	1626		[B-C]
Gmb [A / (B - C)]	2.298	2.307	2.311	2.312	2.312		A/[B-C]
% Air Voids [Pa]	7.2	6.8	6.7	6.6	6.6		100[Gmm-Gmb]/Gmm
Dry volume of air (cm ³)[Va]	117	111	108	110	108		Pa[B-C]/100
Average % Air Voids Overall	Dry	6.9		Wet			
SR Worksheet		Dry Subset			Wet Subset		
Specimen #	L	5	с	4	5	9	
Height (0.1 cm) [t]	9.5	9.5	9.5	9.7	9.5	9.5	
Max. Load (lbs)[P]	3852	3601	3761	1564	1517	1197	
nd. Tens. Str.:ITS (psi)*	111	104	108	44	44		6.4516*2P/3.1415tD
* For 15.0 cm diameter specimen[D]	men[D]	Vacuum <u>SSD</u> V	vt. (g)[B']	3902.9	3846.0	3787.3	
Avg. Wet ITS (psi)[Swet]		Weight in air (g)[A]	g)[A]	3822.4	3759.7		
Avg. Dry ITS (psi)[Sdry]	108	Vol. Absorb H ₂ O	(cm [°])[J [°]]	81	86		B'-A
TSR (%)[100Swet/Sdry]		Dry volume of air (cm^3) [Va]	r (cm³)[Va]	110	108		
		70% Sat. (Target VSSD)	VSSD)	3899	3835		A+0.7Va
	AVG	80% Sat. (Target VSSD)	VSSD)	3910	3846		A+0.8Va
Air Voids (%)		% Saturation		73	80		100J'/Va
Dry Subset %Air	6.9		in. Hg	22	23	23	1
Wet Subset %Air			Time (min)	8	8	8	
Saturation (%)			in. Hg	25	26	24	
			Time (min)	-	-	~	
			ā				
1 Irrie In 25 C waterbau (2 hrs ± 10 min)			7U				
					Wet Subset		
NOTE: Shaded cells indicate		Time in Freezer	zer	19h 44m	19h 16m	18h 54m	
cells needing input val	values	(Minimum 16 hrs)	hrs)				
		Time in 60 C waterbath (24 ± 1 hrs)	erbath	23h 30m	23h 30m	23h 30m	
Test Time	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	12/22/2003	
	5-25 PM	5-30 PM	5-35 PM	4-20 PM	4:25 PM	4.30 PM	

								[B-C]	A/[B-C]	100[Gmm-Gmb]/Gmm	Pa[B-C]/100						6.4516*2P/3.1415tD			B'-A		A+0.7Va	A+0.8Va	100J'Na											
six.	2.476		6	3692.3	3707.9	2094.9	9.5							9	9.5	1197		3787.3							23	8	24	-			18h 54m		23h 30m		12/22/2003 4:30 PM
T-283 Rev3-24-04Example.xls	Gmm =	Wet Subset	5	3759.7	3770.7	2144.3	9.5	1626	2.312	6.6	108		Wet Subset	5	9.5	1517	44	3846.0	3759.7	86	108	3835	3846	80	23	8	26	1			19h 16m		23h 30m		12/22/2003 4:25 PM
T-283 Rev3-2			4	3822.4	3833.5	2180.0	9.7	1654	2.312	6.6	110	Wet		4	9.7	1564	44	3902.9	3822.4	81	110	3899	3910	73	22	8	25	1			19h 44m		23h 30m	10,00,000	12/22/2003 4:20 PM
			3	3755.1	3765.0	2140.2	9.5	1625	2.311	6.7	108			0	9.5	3761	108	t. (g)[B'])[A]	(cm [°])[J']	(cm ³)[Va]	/SSD)	/SSD)		in. Hg	Time (min)	in. Hg	Time (min)	2h		er	Irs)	rbath		12/22/2003 5:35 PM
AASHTO T-283		Dry Subset	2	3749.7	3761.0	2135.9	9.5	1625	2.307	6.8	111	6.9	Drv Subset	2	9.5	3601	104	<u>Vacuum SSD</u> Wt. (g)[B']	Weight in air (g)[A]	Vol. Absorb H ₂ O (cm ³)[J [*]	Dry volume of air $(cm^3)[Va]$	70% Sat. (Target VSSD)	80% Sat. (Target VSSD)	% Saturation				Dry Subset	1h 55m		Time in Freezer	(MINIMUM 16 Nrs)	Time in 60 C waterbath (24 ± 1 hrs)		12/22/2003 5:30 PM
			1	3725.8	3735.6	2114.3	9.5	1621	2.298	7.2	117	Dry		-	9.5	3852	111	men[D]		108			AVG		6.9				1h 50m			nes			12/22/2003 5:25 PM
	Mix Number Example	Gmb Worksheet	Specimen #	Weight in air (g) [A]	SSD Weight (g) [B]	Weight in water (g) [C]	Height (0.1 cm) [t]	Volume (cm 3) [B - C]	Gmb [A / (B - C)]	% Air Voids [Pa]	Dry volume of air (cm ³)[Va]	Average % Air Voids Overall	TSR Worksheet	Specimen #	Height (0.1 cm) [t]	Max. Load (lbs) [P]	Ind. Tens. Str.:ITS (psi)*	* For 15.0 cm diameter specimen[D]	Avg. Wet ITS (psi)[Swet]	Avg. Dry ITS (psi)[Sdry]	TSR (%)[100Swet/Sdry]			Air Voids (%)	Dry Subset %Air	Wet Subset %Air	Saturation (%)		Time in 25 C waterbath	(2 hrs ± 10 min)		cells needing input values		ł	l est lime

Calculations: TSRCalculate TSR:
$$TSR = \frac{S_2}{S_1} \times 100$$
 $S_2 =$ Average of conditioned (wet) pucks tensile strength. $S_1 =$ Average of unconditioned (dry) pucks tensile strength.Report TSR to the nearest whole %121

be an outlier.

128

Comparison: QC to QA

TSR -favorable comparison is when QA and QC results are within 10% of each other.

- If the difference is 5 to 10%, TSR's are evaluated by MoDOT field office.
- If difference is >10%, initiate dispute resolution.
- QC and QA retained samples may have to be kept for extended periods.

129

Common Errors/ Unfavorable Comparison

- Shaking saturated puck to "adjust" saturated mass.
- Using pucks out of the acceptable air void range (7.0 ± 0.5 or 6.0 ± 0.5%).
- Proper water tank temperature not maintained (25 and 60°C).
- Using puck that has been over or under saturated instead of discarding or applying additional vacuum.
 130

130

Common Errors/ Unfavorable Comparison

- Using incorrect maximum specific gravity to calculate voids and % saturation.
- Specimen in water bath for the incorrect amount of time.
- Not cleaning breaking apparatus when dirty.
- Not annually verifying breaking machine.

131

131

Common Errors/ Unfavorable Comparison

- Not molding specimens at correct temperature (if cool, may break aggregate).
- Not aging lab specimens, the correct time & temperature (lab-mixed only).
- Not adding 10 ml of water prior to freezing.
- Allowing specimens to drain after saturation but prior to freezing.

132

Common Errors/ Unfavorable Comparison

- Using vacuum out of allowable range (10-26 in. Hg).
- Not allowing specimen to "rest" 5-10 minutes after vacuum period.
- Exceeding time of vacuum.
- Not air-drying T166-tested unconditioned pucks for 24 hrs. prior to breaking.
- Sample contaminated with dust, release agent overspray, etc.

133

Common Errors/ Unfavorable Comparison

- Improper filling of sample into boxes.
- Improper mixing and splitting procedures.
- One or more mixture re-warmings.
- Testing pucks at extreme ends of allowable range of voids [6.5, 7.5] may result in poor QC/QA comparison.
- QC and QA not sampling at the same locationtype (roadway vs plant) TSR and Rice gravity.

134

		and a second
	the second s	

143

- Sample for TSR is quartered per AASHTO R47.
- Opposing 2 quarters are removed and combined for the retained split.
- Combine remaining 2 quarters.
- Quarter again.
- Combine opposite quarters, producing 2 piles.
- Quarter each pile. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

- Combine remaining 2 quarters.
- Quarter again.
- Combine opposite quarters, producing 2 piles.
- Quarter each half again. Now have 8 splits.
- Pull 6 pucks.
- Pull Rice if necessary.

149

149

TENSILE STRENGTH RATIO CERTIFICATION PROFICIENCY EXAMINATION

Revised 2022

Applicant_____

Employer_____

TENSILE STRENGTH RATIO (TSR) TECHNICIAN CERTIFICATION PROFICIENCY CHECKLIST AASHTO T 283

Revised: 03/22/2022

Trial#	1	2	R
 Sample Preparation and Grouping: 1. Obtained field-mixed asphalt mixture sample in accordance with AASHTO R97 with enough material to complete all tests. 			
2. Compact \geq 6 pucks to spec: 95 ± 5 mm thick and 7.0 ± 0.5% air voids.			
3. Determine specimen thickness (<i>t</i>)			
 Obtain G_{mb} (bulk specific gravity) for each puck. Using an associated G_{mm} (Rice) using AASHTO T209, calculate % air voids for each puck. 			
 Sort into 2 groups of 3 pucks each so that <u>average air voids of each</u> <u>group</u> are approximately equal. 			
"Dry" (Non-conditioned) Testing:			
7. Before proceeding, be sure pucks have air-dried for 24 ± 3 hrs. <u>after</u> G _{mb} determination.			
8. Place each dry puck in its own water-proof bag. Place bagged dry pucks in warm-water bath for 2 hrs. \pm 10 min. with 1" of water above surface of specimens.			
 Test each puck in indirect tension; record maximum load for each. Calculate tensile strength for each. 			
10. Calculate average tensile strength for dry set of pucks (Sdry).			
 "Wet" (Conditioned) Testing: 11. Place puck in vacuum vessel with at least 1" of water below and above the puck; subject to vacuum saturation for 5-10 min. within specified vacuum range. 			
12. Remove vacuum; keep puck submerged for another 5-10 min. 13. Having already zeroed out a piece of plastic wrap on the balance,			
remove puck, quickly surface-dry it, and place it on the balance.			
14. Determine degree of saturation (i.e., is the weight displayed on the balance within the range needed?).			
15. If saturation < 70%, repeat vacuum procedure using more time and/or vacuum.			
 16. If saturation > 80%, discard specimen. 17. If degree of saturation is 70-80%, tightly wrap plastic film around puck, place sealed puck in plastic bag along with 10 ml water, seal outer bag and place in freezer for at least 16 hrs. 			

18. Remove pucks from freezer and plastic bag; quickly place pucks into hot-water bath for 24 ± 1 hr. (1" of water above surface of specimens); remove plastic wrap as soon as possible.		
19. After 24 \pm 1 hr. in hot-water bath, transfer pucks to warm-water bath for 2 hrs. \pm 10 min.		
20. Obtain specimen thickness (<i>t</i>) then test each puck in indirect tension; record maximum load for each. Calculate tensile strength for each.		
21. <u>Calculate average tensile strength</u> for conditioned set of pucks (S _{conditioned}).		
22. Calculate TSR: TSR= $\frac{S_{\text{conditioned}}}{S_{\text{dry}}} \times 100\%$ (to nearest whole number)		
Pass?		
Fail?		

Examiner	Date
Reviewer	Date