2023 - 2025

HMA AGGREGATE CONSENSUS TESTS

PROFICIENCY EXAMINATION

APPLICANT_____

EMPLOYER_____

Uncompacted Void Content of Fine Aggregate AASHTO T 304-17(2020): Method A

			Trial#	1	2	R
Ма	terial Preparation (state these re	quirements):				•
1.	Split a cold-feed belt field sample	over #4 sieve				
2.	Wash -#4 material over a #100 or	#200 sieve and then oven-	dry			
3.	Sieve oven-dry material into nece	ssary size fractions				
Te	st Sample Preparation:			1		1
4.	Weigh out the following quantities	and combine				
	Individual Size Fractions	Mass, g	OK?			
	Pass #8, Retained #16	44 ± 0.2				
	Pass #16, Retained #30	57 ± 0.2				
	Pass #30, Retained #50	72 ± 0.2				
	Pass #50, Retained #100	17 ± 0.2				
Pro	ocedure:					
5.	Mix test sample with spatula until	it appears homogeneous				
6.	Place funnel stand apparatus in clean, dry, non-warped retaining					
	pan and center cylindrical measure under funnel					
7.	Block opening of the funnel with finger then pour test sample into the					
	funnel	č				
8.	Using the spatula, level the mater effort.	ial in the funnel with minimu	m			
9.	 Remove finger and allow material to fall freely into cylindrical 					
	measure while exercising care to	avoid vibration/disturbance	that			
	could cause additional compaction	n of material in the measure				
10.	After funnel empties, and again be	eing careful to avoid vibratio	n.			
	strike off excess angregate with a single pass of the spatula with the					
	width of the blade vertical using the	he straight part of its edge in	light			
	which of the blace vertical using the straight part of its edge in light					
contact with the top of the cylindrical measure						
	Alter striking on excess aggregate	e, brush adhenny material n				
	outside of the measure then obtai		5 UI			
	measure and contents to the hear	rest 0.1 gram. NOTE: After st	rike-off,			
	measure may be tapped lightly to col	mpact sample to make it easie	r io mole			
40	Transfer container to scale of balance	e without spining any of the sar				
12.	Re-compline the sample from reta	ining pan and cylindrical me	asure			
	and repeat the procedure (steps 5	o through 11) for trial #2				
13.	Obtain and record mass of the em	npty cylindrical measure				

Calculations:				
14. Calculate uncompacted voids for trials #1 and #2 as follows:				
$U = \frac{V - \left(\frac{F}{G}\right)}{V} \times 100$				
Where: U = Uncompacted voids, nearest 0.1% V = Volume of cylindrical measure, ml or cm ³ G = Bulk dry specific gravity of fine aggregate F = Mass of aggregate in cylindrical measure, g				
15. Calculate average uncompacted voids (nearest 0.1%)				
	PASS?			
	FAIL?			
ProctorDate_				

Reviewer_____Date_____

Determining Percentage of Fractured Particles in Coarse Aggregate: ASTM D 5821-13 (2017)

	Trial#	1	2	R
Material Preparation (state these requirements):				
1.	Split a cold-feed belt field sample over #4 sieve			
2.	Reduce the +#4 material to the appropriate testing size using splitter			
3.	Wash test sample over #4 sieve and then oven-dry			
Ра	rticle Inspection Procedure:			
4.	Determine the mass (weight) of the test sample to the nearest 0.1 gram and record as "Test Sample Weight"			
5.	Place sample on clean, flat surface and begin inspecting individual particles by holding the suspected fractured face such that it is viewed directly. <i>If the area of the face constitutes at least ¼ of the maximum cross-sectional area of the particle</i> , it is considered a fractured face			
6.	Place particle in one of three piles: 1) no fractured faces (N), 2) only one fractured face (F1), or 3) two or more fractured faces (F2)			
7.	Having inspected the entire original sample, determine and record the weight of each of the three piles to the nearest 0.1 gram			
Ca	Iculations:			
8.	Determine the percentages of the single and multiple fractured faces to the nearest whole % using the following equations: $\%Single FF = P_1 = \frac{F1 + F2}{F1 + F2 + N} \times 100$ $\%Multiple FF = P_2 = \frac{F2}{F1 + F2 + N} \times 100$			
	PASS?			
	FAIL?			
		-	-	

Proctor	_Date
Reviewer	_Date

Plastic Fines in Graded Aggregates and Soils by use of the Sand Equivalent Test: AASHTO T 176-17

	Trial#	1	2	R
Pre	Preliminary Material Preparation (state these requirements):			
1. Split a cold-feed belt field sample over #4 sieve				
2.	Clean fines from +#4 particles and include with -#4 material			
3.	Split or quarter –#4 material to yield slightly more than four 85 ml tin measures of –#4 material (500 – 750 grams)			
4.	The remainder of the test can be performed on material in one of the following moisture conditions: 1) Air-Dry 2) Pre-Wet 3) Oven-Dry			
Air	-Dry Sample Preparation (perform these requirements):		-	
5.	Split or quarter enough air-dry –#4 material to fill one tin measure slightly rounded above brim			
6.	While filling, tap tin measure on hard surface to consolidate material			
7.	Strike off the tin measure level full with spatula or straightedge			
Pro	ocedure:			•
8.	Siphon 4 ± 0.1 inches of working calcium chloride solution into plastic cylinder			
9.	Pour prepared sample from tin measure into cylinder using funnel to avoid spillage			
10.	Tap bottom of cylinder sharply on heel of hand several times to release air bubbles and promote thorough wetting of sample			
11.	Allow wetted sample to stand undisturbed for 10 ± 1 minutes (state this requirement)			
12.	Place stopper in cylinder and loosen material from bottom of cylinder by partial inversion & shaking			
Sha	ake the Cylinder: Choose and perform only one of the following metho	ds		
13.	<u>Hand Method</u> : Holding stoppered cylinder in horizontal position, shake vigorously in a horizontal linear motion from end to end, 90 cycles (one cycle is a complete back and forth motion) in approximately 30 seconds, using throw of 9 ± 1 inch			
14.	<u>Manual Shaker Method</u> : Secure stoppered cylinder in device; reset stroke counter to zero; generate left-right oscillation by pushing with fingertips against right-hand steel spring (only during leftward motion) with sufficient force so that the pointer continually aligns with stroke limit marker; continue for 100 strokes			

15. <u>Mechanical Shaker (Reference) Method</u> : Secure stoppered cylinder	
In device and snake for 45 ± 1 seconds	
To. Following snaking, set cylinder upright on work table and quickly	
remove stopper	
17. As quickly as possible once the stopper is removed, insert the	
irrigator tube into the cylinder, start the solution flowing, and rinse	
material from cylinder walls as irrigator is lowered	
18. Force irrigator through material to bottom of cylinder with gentle	
stabbing and twisting action while solution flows from tip, flushing	
fines into suspension	
19. Continue to flush as many fines from sand as possible until fluid	
level approaches the 15" mark	
20. Withdraw irrigator without shutting off the fluid flow such that the	
final fluid level (as indicated by the bottom of the meniscus) is 15"	
21. Allow cylinder & contents to stand undisturbed for 20 minutes ± 15	
seconds (state this requirement)	
22. At conclusion of 20 minutes \pm 15 seconds time period, obtain and	
record "Clay Reading" (CR). If between divisions, round up to next	
highest 0.1"	
23. Gently and slowly lower weighted foot assembly into cylinder until	
foot comes to rest on top of sand layer	
24. Slightly tip the assembly until plastic disk indicator touches the side	
of the cylinder, observe the reading at the extreme upper edge of	
the indicator, subtract 10.0", record result as "Sand Reading" (SR).	
If between divisions, round up to next highest 0.1"	
Calculations:	
25. Calculate Sand Equivalent using the following equation:	
Sand Equivalent SR100	
Sand Equivalent = $\frac{1}{CR} \times 100$	
(calculate to nearest 0.1%; report to next highest whole %)	
PASS?	
FAIL?	
	I
ProctorDate	

Reviewer_____Date_____